CellMixS

Explore data integration and batch effects

Almut Lütge
DMLS - University of Zürich
2019-12-08
Batch effects
```r
library(CellMixS)

# Input data  SingleCellExperiment object
sce1 <- readRDS("data/sim_batch_2.rds")
sce2 <- readRDS("data/sim_batch_1.5.rds")

# Get Cellspecific Mixing Score
sce1 <- evalIntegration(metrics = "cms", sce1, group = "batch_id", k = 100)
sce2 <- evalIntegration(metrics = "cms", sce2, group = "batch_id", k = 100)
```
Cellspecific Mixing Score
Cellspecific Mixing Score

show groups
visGroup(sce1, "batch_id")

show metric
visMetric(sce1, "cms_smooth")
get cms scores from sce

cms_res <- data_frame("cms_sce1" = sim_batch2$cms, "cms_sce2" = sim_batch$cms)

show scores as histogram
p <- visHist(cms_res, n_col = 2)
Random batches

#assign random batch label
sce2$random_batch <- sample(sce2$batch_id, ncol(sce), replace = FALSE)

run cms
sce2 <- evalIntegration("cms", sce = sce2, group = "random_batch", k = 100,
res_name = "cms_random")

show scores as histogram
 cms_res$cms_random <- sce2$cms_random
p <- visHist(cms_res, n_col = 3)
More options
More options

More functionalities

- Adjust neighbourhoods (important for unbalanced batches)
- Group by celltype
- Compare Integration

More metrics

- entropy
- inverse Simpson Index
- mixingMetric (Seurat)
- Local density factor
- LocalStructure (Seurat)
Summary

- Quantify (batch-) mixing
 - Cellspecific
 - Neighbourhood adjustment
 (Unbalanced batches!)
 - Different metrics

- Quantify structural changes upon integration
 - Cellspecific

- Visualize mixing