Deconvolution of Transcriptomic Data Shows Biologically and Clinically Relevant Signals in Pancreatic Tumors

Aliaksandra Kakoichankava1,3,4, Andrea S. Bauer2, Aliaksandr Siatkouski3, Yury Arlouski1, Ivan Zhyltsou1, Konstantin Dedyulya4, Gunnar Dittmar5, Jörg D. Hoheisel6 and Petr V. Nazarov5,6

(1) Vitebsk State Medical University, Belarus; (2) German Cancer Research Center, Germany; (3) Vitebsk Regional Hospital, Belarus; (4) NatiVita, Belarus; (5) Luxembourg Institute of Health, Luxembourg; (*) Corresponding author: petr.nazarov@ilu.lu

Pancreatic cancer is a significant challenge to oncology. The early stages of the disease are asymptomatic, which limits diagnosis and treatment of the neoplastic process and thus lead to bad survival prognosis [1,2].

Independent component analysis transforms the data into a matrix product of statistically independent transcriptional signals and their weight.

Datasets (D):
- TCGA: 183 samples
- Bailey: 96 samples
- DKFZ: 457 samples

Clinical information: gender, tumor subtype, survival, sample purity.

Risk score (RS) is calculated as the weighted sum on scaled rows of M and Cox log hazard ratio (H). Stability of the components (R²) is also considered.

https://gitlab.com/biomodilh/contica

Research goals:
1. Identify pathophysiological processes affecting survival of patients with pancreatic cancer.
2. Characterize tumor purity in unsupervised manner.
3. Predict survival of new patients.

1 Components identified by ICA were annotated by biological functions (GO) and linked to survival using Cox regression as is described in [3].

Increased risk:
- keratinization
- cell cycle
- response to hypoxia
- neoangiogenesis
- cornification
- activation of ERK-signaling

No effect:
- immune response
- gender
- axon development

Reduced risk:
- hormone secretion activity (normal function)
- digestion
- antigen binding

Unlike in melanoma [3], no direct link was found between immune response and survival: perhaps due to a dual / antinomic effect.

2 ICA was able to detect transcriptional signals specific to stroma and tumors. Abundance of normal pancreas tissue as well as immune cells was detected in an unsupervised manner and correlated to an independent observation of an immuno-histopathologist. For Bailey dataset such correlation was observed with in silico predictions.

3 Here we combined DKFZ (training) and Bailey (testing) datasets. ICA was performed on the joint data. Risk scores (RS) were calculated as in [3] and visualized:

Conclusions:
- Pathophysiological processes that affect survival in patients with pancreatic cancer are cell proliferation and keratinization. No strong effect of immune components on survival was detected.
- Tumor purity was characterized. It strongly correlated with independent observations of immune cells in DKFZ cohort and in silico estimation in Bailey dataset.
- Risk score calculated for the testing dataset (Bailey) strongly correlated with the survival (p-value < 0.001).

Acknowledgements: AK was supported by the travel grant of University Grenoble Alpes. This work was supported by the Luxembourg National Research Fund C17/BM/11664971 "DEMICS".

References